Bem-Vindos Welcome Bienvenido
"Os olhos são os senhores da astronomia e os autores da cosmografia; eles desvendam e corrigem toda a arte da humanidade; conduzem os homens ás partes mais distantes do mundo; são os príncipes da matemática, e as ciências que os têm por fundamento são perfeitamente correctas.Os olhos medem a distância e o tamanho das estrelas; encontram os elementos e suas localizações; eles... deram origem à arquitectura, à perspectiva, e à divina arte da pintura...Que povos, que línguas poderão descrever completamente sua função! Os olhos são a janela do corpo humano pela qual ele abre os caminhos e se deleita com a beleza do mundo".
>>>>>>>>Este Espaço está em permanente actualização<<<<<<<<
segunda-feira, 26 de novembro de 2007
Olho Seco
Jogos de acção melhoram visão
Córnea artifical revoluciona implantes oculares
Nadar com música
sexta-feira, 9 de novembro de 2007
Hyperopia
Common signs of farsightedness include difficulty in concentrating and maintaining a clear focus on near objects, eye strain, fatigue and/or headaches after close work, aching or burning eyes, irritability or nervousness after sustained concentration.
Common vision screenings, often done in schools, are generally ineffective in detecting farsightedness. A comprehensive optometric examination will include testing for farsightedness.
In mild cases of farsightedness, your eyes may be able to compensate without corrective lenses. In other cases, your optometrist can prescribe eyeglasses or contact lenses to optically correct farsightedness by altering the way the light enters your eyes.
Myopia
Nearsightedness is a very common vision condition that affects nearly 30 percent of the U.S. population. Some evidence supports the theory that nearsightedness is hereditary. There is also growing evidence that nearsightedness may be caused by the stress of too much close vision work. It normally first occurs in school-age children. Because the eye continues to grow during childhood, nearsightedness generally develops before age 20.
A sign of nearsightedness is difficulty seeing distant objects like a movie or TV screen or chalkboard. A comprehensive optometric examination will include testing for nearsightedness. Your optometrist can prescribe eyeglasses or contact lenses to optically correct nearsightedness by altering the way the light images enter your eyes. You may only need to wear them for certain activities, like watching TV or a movie or driving a car, or they may need to be worn for all activities.
Refractive surgery or laser procedures are also possible treatments for nearsightedness as is orthokeratology. Orthokeratology (ortho-k) is a non-invasive procedure that involves the wearing of a series of specially-designed rigid contact lenses to progressively reshape the curvature of the cornea over time.
Strabismus (Crossed Eyes)
There is a common misconception that a child will outgrow strabismus. This is not true. In fact, the condition may get worse without treatment.
Treatment for strabismus may include single vision or bifocal eyeglasses, prisms, vision therapy, and in some cases, surgery. Vision therapy helps align your eyes and solves the underlying cause of strabismus by teaching your two eyes to work together. Surgery alone may straighten your eyes, but unless your eye muscle control is improved, your eyes may not remain straight.
If detected and treated early, strabismus can often be corrected with excellent results.
Brócolos ajudam a combater os raios ultravioletas
domingo, 21 de outubro de 2007
Crystalline Lens
In young people, the lens changes shape to adjust for close or distance vision. This is called accommodation. With age, the lens gradually hardens, diminishing the ability to accommodate.
Amblyopia
A child’s visual system is fully developed between approximately the ages of 9-11. Until then, children readily adapt to visual problems by suppressing or blocking out the image. If caught early, the problem can often be corrected and the vision preserved. However, after about age 11, it is difficult if not impossible to train the brain to use the eye normally.
Some causes of amblyopia include: strabismus (crossed or turned eye), congenital cataracts, cloudy cornea, droopy eyelid, unequal vision and uncorrected nearsightedness, farsightedness or astigmatism. Amblyopia may occur in various degrees depending on the severity of the underlying problem. Some patients just experience a partial loss; others are only able to recognize motion.
Patients with amblyopia lack binocular vision, or stereopsis – the ability to blend the images of both eyes together. Stereopsis is what allows us to appreciate depth. Without it, the ability to judge distance is impaired.
Signs and Symptoms
Poor vision in one or both eyes
Squinting or closing one eye while reading or watching television
Crossed or turned eye
Turning or tilting the head when looking at an object
Note: Children rarely complain of poor vision. They are able to adapt very easily to most visual impairments. Parents must be very observant of young children and should have a routine eye exam performed by the age of 2-3 to detect potential problems.
Detection and Diagnosis
When amblyopia is suspected, the doctor will evaluate the following: vision, eye alignment, eye movements, and fusion (the brain’s ability to blend two images into a single image).
Treatment
The treatment for amblyopia depends on the underlying problem. In some cases, the strong eye is temporarily patched so the child is forced to use the weaker eye. For children with problems relating to a refractive error, glasses may be necessary to correct vision. Problems that impair vision such as cataracts or droopy eyelids often require surgery. Regardless of the treatment required, it is of utmost importance that intervention is implemented as early as possible before the child’s brain learns to permanently suppress or ignore the eye.
Catarats
Eye without a cataract
Eye with a cataract
A cataract is a clouding of the natural lens, the part of the eye responsible for focusing light and producing clear, sharp images. The lens is contained in a sealed bag or capsule. As old cells die they become trapped within the capsule. Over time, the cells accumulate causing the lens to cloud, making images look blurred or fuzzy. For most people, cataracts are a natural result of aging.
In fact, they are the leading cause of visual loss among adults 55 and older. Eye injuries, certain medications, and diseases such as diabetes and alcoholism have also been known to cause cataracts.
Dry eye
Tears are comprised of three layers. The mucus layer coats the cornea, the eye’s clear outer window, forming a foundation so the tear film can adhere to the eye. The middle aqueous layer provides moisture and supplies oxygen and other important nutrients to the cornea. This layer is made of 98 percent water along with small amounts of salt, proteins and other compounds. The outer lipid layer is an oily film that seals the tear film on the eye and helps to prevent evaporation.
Tears are formed in several glands around the eye. The water layer is produced in the lacrimal gland, located under the upper eyelid. Several smaller glands in the lids make the oil and mucus layers. With each blink, the eyelids spread the tears over the eye. Excess tears flow into two tiny drainage ducts in the corner of the eye by the nose. These ducts lead to tiny canals that connect to the nasal passage. The connection between the tear ducts and the nasal passage is the reason that crying causes a runny nose.
In addition to lubricating the eye, tears are also produced as a reflex response to outside stimulus such as an injury or emotion. However, reflex tears do little to soothe a dry eye, which is why someone with watery eyes may still complain of irritation.
Dry eye syndrome has many causes. One of the most common reasons for dryness is simply the normal aging process. As we grow older, our bodies produce less oil – 60% less at age 65 then at age 18. This is more pronounced in women, who tend to have drier skin then men. The oil deficiency also affects the tear film. Without as much oil to seal the watery layer, the tear film evaporates much faster, leaving dry areas on the cornea.
Many other factors, such as hot, dry or windy climates, high altitudes, air-conditioning and cigarette smoke also cause dry eyes. Many people also find their eyes become irritated when reading or working on a computer. Stopping periodically to rest and blink keeps the eyes more comfortable.
Contact lens wearers may also suffer from dryness because the contacts absorb the tear film, causing proteins to form on the surface of the lens. Certain medications, thyroid conditions, vitamin A deficiency, and diseases such as Parkinson’s and Sjogren’s can also cause dryness. Women frequently experience problems with dry eyes as they enter menopause because of hormonal changes.
Itching
Burning
Irritation
Redness
Blurred vision that improves with blinking
Excessive tearing
Increased discomfort after periods of reading, watching TV, or working on a computer
Treatment A treatment option - BioTears™
When it comes to treating dry eyes, everyone’s needs are a little different. Many find relief simply from using artificial tears on a regular basis. Some of these products are watery and alleviate the symptoms temporarily; others are thicker and adhere to the eye longer. Preservative-free tears are recommended because they are the most soothing and have fewer additives that could potentially irritate. Avoid products that whiten the eyes – they don’t have adequate lubricating qualities and often make the problem worse.
There are also simple lifestyle changes that can significantly improve irritation from dry eyes. For example, drinking eight to ten glasses of water each day keeps the body hydrated and flushes impurities. Make a conscious effort to blink frequently – especially when reading or watching television. Avoid rubbing the eyes. This only worsens the irritation.
Treating dry eye problems is important not only for comfort, but also for the health of the cornea.
sábado, 20 de outubro de 2007
Diabetic Retinopathy
The next stage is known as proliferative diabetic retinopathy. In this stage, circulation problems cause areas of the retina to become oxygen-deprived or ischemic. New, fragile, vessels develop as the circulatory system attempts to maintain adequate oxygen levels within the retina. This is called neovascularization. Unfortunately, these delicate vessels hemorrhage easily. Blood may leak into the retina and vitreous, causing spots or floaters, along with decreased vision.
In the later phases of the disease, continued abnormal vessel growth and scar tissue may cause serious problems such as retinal detachment and glaucoma.
Blurred vision (this is often linked to blood sugar levels
Floaters and flashes
Sudden loss of vision
Detection and Diagnosis
Diabetic patients require routine eye examinations so related eye problems can be detected and treated as early as possible. Most diabetic patients are frequently examined by an internist or endocrinologist who in turn work closely with the ophthalmologist.
Diabetic retinopathy is treated in many ways depending on the stage of the disease and the specific problem that requires attention. The retinal surgeon relies on several tests to monitor the progression of the disease and to make decisions for the appropriate treatment. These include: fluorescein angiography, retinal photography, and ultrasound imaging of the eye.
The abnormal growth of tiny blood vessels and the associated complication of bleeding is one of the most common problems treated by vitreo-retinal surgeons. Laser surgery called pan retinal photocoagulation (PRP) is usually the treatment of choice for this problem.
With PRP, the surgeon uses laser to destroy oxygen-deprived retinal tissue outside of the patient’s central vision. While this creates blind spots in the peripheral vision, PRP prevents the continued growth of the fragile vessels and seals the leaking ones. The goal of the treatment is to arrest the progression of the disease.
Vitrectomy is another surgery commonly needed for diabetic patients who suffer a vitreous hemorrhage (bleeding in the gel-like substance that fills the center of the eye). During a vitrectomy, the retina surgeon carefully removes blood and vitreous from the eye, and replaces it with clear salt solution (saline). At the same time, the surgeon may also gently cut strands of vitreous attached to the retina that create traction and could lead to retinal detachment or tears.
Patients with diabetes are at greater risk of developing retinal tears and detachment. Tears are often sealed with laser surgery. Retinal detachment requires surgical treatment to reattach the retina to the back of the eye. The prognosis for visual recovery is dependent on the severity of the detachment.
Diabetics can also greatly reduce the possibilities of eye complications by scheduling routine examinations with an ophthalmologist. Many problems can be treated with much greater success when caught early.
Macular Degeneration
What is the difference between wet and dry macular degeneration?AMD is classified as either wet (neovascular) or dry (non-neovascular). About 10% of patients who suffer from macular degeneration have wet AMD. This type occurs when new vessels form to improve the blood supply to oxygen-deprived retinal tissue. However, the new vessels are very delicate and break easily, causing bleeding and damage to surrounding tissue.
Dry macular degeneration, although more common, typically results in a less severe, more gradual loss of vision.
Wet macular degeneration develop new blood vessels under the retina. This causes hemorrahage, swelling, and scar tissue but it can be treated with laser in some cases.
The dry type is much more common and is characterized by drusen and loss of pigment in the retina. Drusen are small, yellowish deposits that form within the layers of the retina.
What causes macular degeneration?
Macular degeneration may be caused by variety of factors. Genetics, age, nutrition, smoking, and sunlight exposure may all play a role. Signs and Symptoms
Loss of central vision. This may be gradual for those with the dry type. Patients with the wet type may experience a sudden decrease of the central vision.
Difficulty reading or performing tasks that require the ability to see detail
Distorted vision (Straight lines such as a doorway or the edge of a window may appear wavy or bent.)
Detection and Diagnosis
Eye physicians usually diagnose AMD. Vision testing, Amsler grid test, ophthalmoscopy, fundus photography and fluorescein angiography are some common tests performed during a retinal exam.
Treatment
There is no proven medical therapy for dry macular degeneration. In selected cases of wet macular degeneration, laser photocoagulation is effective for sealing leaking or bleeding vessels. Unfortunately, laser photocoagulation usually does not restore lost vision, but it may prevent further loss. Recently, photodynamic therapy has proven to be effective in stopping abnormal blood vessel growth in some patients with wet AMD. This new type of laser treatment is far less damaging than laser photocoagulation and is the treatment of choice in many cases.Early diagnosis is critical for successful treatment of wet macular degeneration. Patients can help the doctor detect early changes by monitoring vision at home with an Amsler grid.
Nutrition and macular degenerationSeveral recent studies have indicated a strong link between nutrition and the development of macular degeneration. It has been scientifically demonstrated that people with diets high in fruits and vegetables (especially leafy green vegetables) have a lower incidence of macular degeneration. More studies are needed to determine if nutritional supplements can prevent progression in patients with existing disease.
Tips for AMD patients
If you’ve been diagnosed with AMD, making a few simple lifestyle changes could have a positive impact on the health of your retina.
Monitor your vision daily with an Amsler grid. By checking your vision regularly, changes that may require treatment can be detected early.
Take a multi-vitamin with zinc. (check with your eye physician for a recommendation). Antioxidants, along with zinc and lutein are essential nutrients, all found in the retina. It is believed that people with AMD may be deficient in these nutrients.
Incorporate dark leafy green vegetables into your diet. These include spinach, collard greens, kale and turnip greens.
Always protect your eyes with sunglasses that have UV protection. Ultraviolet rays are believed to cause damage to the pigment cells in the retina.
Quit smoking. Smoking impairs the body’s circulation, decreasing the efficiency of the retinal blood vessels.
Exercise regularly. Cardiovascular exercise improves the body’s overall health and increases the efficiency of the circulatory system.
These are a few tips to make reading easier:
Use a halogen light. These have less glare and disperse the light better than standard light bulbs.
Shine the light directly on your reading material. This improves the contrast and makes the print easier to see.
Use a hand-held magnifier. A drugstore magnifier can increase the print size dramatically.
Try large-print or audio books. Most libraries and bookstores have special sections reserved for these books.
Consult a low vision specialist. These professionals are specially trained to help visually impaired patients improve their quality of life. After a personalized consultation, they can recommend appropriate magnifiers, reading aids, practical tips, and many resources.
Eyes
The ability to see is dependent on the actions of several structures in and around the eyeball. The graphic below lists many of the essential components of the eye's optical system.
When you look at an object, light rays are reflected from the object to the cornea, which is where the miracle begins. The light rays are bent, refracted and focused by the cornea, lens, and vitreous. The lens' job is to make sure the rays come to a sharp focus on the retina. The resulting image on the retina is upside-down. Here at the retina, the light rays are converted to electrical impulses which are then transmitted through the optic nerve, to the brain, where the image is translated and perceived in an upright position.
Think of the eye as a camera. A camera needs a lens and a film to produce an image. In the same way, the eyeball needs a lens (cornea, crystalline lens, vitreous) to refract, or focus the light and a film (retina) on which to focus the rays. If any one or more of these components is not functioning correctly, the result is a poor picture. The retina represents the film in our camera. It captures the image and sends it to the brain to be developed. The macula is the highly sensitive area of the retina. The macula is responsible for our critical focusing vision. It is the part of the retina most used. We use our macula to read or to stare intently at an object.
The conjunctiva is the thin, transparent tissue that covers the outer surface of the eye. It begins at the outer edge of the cornea, covering the visible part of the sclera, and lining the inside of the eyelids. It is nourished by tiny blood vessels that are nearly invisible to the naked eye.
The conjunctiva also secretes oils and mucous that moisten and lubricate the eye.
The choroid lies between the retina and sclera. It is composed of layers of blood vessels that nourish the back of the eye. The choroid connects with the ciliary body toward the front of the eye and is attached to edges of the optic nerve at the back of the eye.
One function of the ciliary body is the production of aqueous humor, the clear fluid that fills the front of the eye. It also controls accommodation by changing the shape of the crystalline lens. When the ciliary body contracts, the zonules relax. This allows the lens to thicken, increasing the eye's ability to focus up close. When looking at a distant object, the ciliary body relaxes, causing the zonules to contract. The lens becomes thinner, adjusting the eye's focus for distance vision.
With age, everyone develops a condition known as presbyopia. This occurs as the ciliary body muscle and lens gradually lose elasticity, causing difficulty reading.
The adult cornea is only about 1/2 millimeter thick and is comprised of 5 layers: epithelium, Bowman's membrane, stroma, Descemet's membrane and the endothelium.
Boman's membrane lies just beneath the epithelium. Because this layer is very tough and difficult to penetrate, it protects the cornea from injury.
The stroma is the thickest layer and lies just beneath Bowman's. It is composed of tiny collagen fibrils that run parallel to each other. This special formation of the collagen fibrils gives the cornea its clarity.
Descemet's membrane lies between the stroma and the endothelium. The endothelium is just underneath Descemet's and is only one cell layer thick. This layer pumps water from the cornea, keeping it clear. If damaged or disease, these cells will not regenerate.
Tiny vessels at the outermost edge of the cornea provide nourishment, along with the aqueous and tear film.
All six muscles work in unison to move the eye. As one contracts, the opposing muscle relaxes, creating smooth movements. In addition to the muscles of one eye working together in a coordinated effort, the muscles of both eyes work in unison so that the eyes are always aligned.
The sphincter muscle lies around the very edge of the pupil. In bright light, the sphincter contracts, causing the pupil to constrict. The dilator muscle runs radially through the iris, like spokes on a wheel. This muscle dilates the eye in dim lighting.
The iris is flat and divides the front of the eye (anterior chamber) from the back of the eye (posterior chamber). Its color comes from microscopic pigment cells called melanin. The color, texture, and patterns of each person's iris are as unique as a fingerprint.
The retina's sensory receptor cells of retina are absent from the optic nerve. Because of this, everyone has a normal blind spot. This is not normally noticeable because the vision of both eyes overlaps.
There are two types of photoreceptors in the retina: rods and cones. The retina contains approximately 6 million cones. The cones are contained in the macula, the portion of the retina responsible for central vision. They are most densely packed within the fovea, the very center portion of the macula. Cones function best in bright light and allow us to appreciate color.
This photograph shows a normal retina with blood vessels that branch from the optic nerve, cascading toward the macula.
In children, the sclera is thinner and more translucent, allowing the underlying tissue to show through and giving it a bluish cast. As we age, the sclera tends to become more yellow.
In children, the vitreous has a consistency similar to an egg white. With age it gradually thins and becomes more liquid. The vitreous is firmly attached to certain areas of the retina. As the vitreous thins, it separates from the retina, often causing floaters.
A Visão das Aves
Quando a ave não vive ao ar livre deve receber raios UV. As lâmpadas de iluminação doméstica não os produzem. E, a maior parte das lâmpadas domésticas deturpam a cor natural da visão da ave. A lâmpada Arcadia para aves foi concebida para oferecer todos os raios UV que as aves precisam, e para realçar as cores naturais. A importância da luz de espectro total.
Sem uma fonte equilibrada de luz, o ciclo oculo-endócrino (luz para a glândula pineal e para a glândula pituitária) é afectado. Isto afecta todos os aspectos da vida da ave. Uma iluminação inadequada pode provocar agitação, picagem, enfraquecimento, problemas respiratórios e metabólicos.
Muitas espécies podem sintetizar a vitamina D3 da luz solar através da pele. Especificamente, é a presença dos raios UVB que o permite.
A retina do olho contém cones que, quando estimulados por diferentes comprimentos de ondas de luz, transmitem a informação de cor ao cérebro. Num ser humano, há três tipos de cones, que lhe permitem a percepção de três cores primárias, sendo elas o vermelho, o verde e o azul. A isto chama-se visão tricromática. A combinação destas cores permitenos a visualização de milhares de cores diferentes. As aves têm um quarto cone, sensível á radiação UV, podendo desta forma identificar quatro cores primárias, e a cor adicional é a dos UV. Isto chama-se visão tetracromática.
Pesquisas recentes detectaram que algumas aves podem ver até cinco cores primárias (isto é: têm visão pentacromática), sendo capazes de diferenciar dois tipos de comprimento de ondas UV.
As penas das aves reflectem os raios UV. Esta reflexão da plumagem desempenha um papel na selecção sexual das aves. A criação tem mais êxito quando os UV estão presentes. As aves, como as mynah, que para os olhos humanos são negras, aparecerem aos olhos das aves com várias cores. Acontece o mesmo com as aves brancas.
A percepção UV desempenha um papel significativo na selecção da comida. Os frutos maduros e as bagas parecerão de cores diferentes às aves. As flores em polinização reflectem os UV de uma forma que permite a sua localização pelas aves. Uma ave come aquilo que vê. Com os UV os vermelhos são mais vermelhos e os verdes são mais verdes. Uma ave relutante a comer precisa dos raios UVA para estimular o seu apetite.
A percepção dos UV é utilizada pelas aves para sua orientação. Através da polarização (direcção) do sol, uma ave detecta de que lado vem a luz. Isto permite-lhe voar na direcção correcta.
Tipos de iluminação não recomendados para aves
As lâmpadas incandescentes, incluindo as de neodímio não emitem UV e por isso não são adequadas para aves. As lâmpadas com UVB elevados, tais como as lâmpadas para répteis, podem causar cataratas, e não devem por isso ser utilizadas para aves.As lâmpadas para aquários não apresentam uma relação correcta de vermelho / azul, e também devem ser evitadas
A visão dos cães
Essas diferenças na capacidade visual fazem sentido à luz da teoria da evolução. Uma boa percepção de profundidade e acuidade visual são necessárias para os primatas (dos quais os humanos evoluiram) saltarem pelos galhos das árvores. Uma boa visão de cores permite aos primatas escolherem as frutas mais maduras e nutritivas. Os canídeos, por outro lado, são bem adaptados como caçadores noturnos de presas camufladas.
Os cães veem, de certa forma, como um humano daltônico, isto é, eles são cegos para as cores vermelho e verde (ocorre em 4% dos homens). Simplificando, isso ocorre devido ao facto deles terem somente dois tipos de cones ao invés de três (as células sensíveis à luz incluem os cones e bastonetes).
Uma vez que os cães não possuem fúlvea (ou área com 100% de cones),a sua visão para detalhes é estimada (grosseiramente) como seis vezes menor que a de um humano médio.
Os cães têm uma visão noturna muito melhor por duas razões:
-Eles têm mais bastonetes (que permitem a visão noturna)
-Eles têm uma estrutura chamada Tapetum Lucidum, que é uma superfície reflexiva atrás da retina (área que inclui as células sensíveis à luz) que reflecte a luz atrás dela (dá o estranho brilho à noite).
Os cães são mais capazes de detectar movimentos.
Devido à posição dos olhos, os humanos têm uma sobreposição do campo de visão de cada olho num ângulo de 140 graus; nos cães essa sobreposição gira em torno de 100 graus.
Como resultado, o cão tem uma capacidade limitada de acomodação (foco em elementos a distâncias diferentes), mas uma largura geral de campo que permite a eles ver mais do mundo.
sexta-feira, 19 de outubro de 2007
Anatomy of eye
Through lack of illustrations it is difficult to get a clear conception of Greek and Roman knowledge of ocular anatomy, for the descriptions are frequently not only scant, but confused through a multitude of names, which may or may not have had the same meaning.
Pre-Hippocratic anatomy had hardly passed beyond the stage of recognizing a transparent cornea continuous with an opaque sclera, the whole being lined by a layer with a perforation which formed the pupil. These two layers enclosed a fluid substance. This conception of the anatomy of the eye was not based on detailed observation, but on speculation as to the nature of vision. The fluid in the eye was regarded as the principle of vision and a tube leading from the eye to the brain, allowing for the free movement of this visual substance, led Alcamaeon to postulate the pÓroz, poros. This postulated hollow tube is hardly the solid optic nerve of modern anatomy. An advance of these speculations is to be found with Aristotle, who obviously dissected animal eye. (Figure 1). Three layers instead of two are recognized, though knowledge of the retina hardly went beyond the recognition of its existence. Knowledge of the structure of the cavity of the eye was vague. There was no recognition of the anterior chamber; it was held that the three layers of the eye are intimately apposed to each other. The ocular fluid was considered as of uniform consistency, though some differentiation occurred on exposure to air; the lens, as far as it was clearly recognized, was thus regarded as a post-mortem manifestation. The hollow tube of Alcamaeon became three in number, one of which entered the skull and joined with a corresponding structure from the other eye. The recognition of the chiasma and of ocular vessels had therefore been achieved.
The Alexandrian school contributed largely to the knowledge of the anatomy of the eye. Herophilus in particular seems to have devoted much attention to the eye; from a reference in Aetius it is clear that he wrote a special treatise on the subject. As no manuscripts of this period have survived one has to rely on Celsus for information (Figure 2), and Celsus' account is by no means clear for the reason, as Hirschberg puts it, that he did not understand the subject. There is a clear recognition of the existence of the lens, a drop-like body named Krustalloidez, crystalloides. Whilst no anterior chamber is indicated -- the second layer is still contiguous with the first, except in the pupillary area, which is a mere perforation -- it is recognized that the retina does not come up to the cornea; it forms a smaller enclosing structure, and comes to surround the ocular fluid including the lens. This arrangement leaves a large empty space -- locus vacuus -- between the two outer layers and the smaller retina. As this locus vacuus is also spoken of as containing "humor", a near approach to the appreciation of the existence of the anterior chamber may have been made. What exactly Celsus knew of the optic nerve is not clear: he does not speak of any hollow canal, nor does he speak of a continuation of the retina into the nerve. The optic nerve probably appeared to him as a continuation of the fused two outer layers of the eye.
Four serious defects mar the description by Rufus. He failed to recognize the existence of the posterior chamber, the greater curvature of the cornea as compared with the sclera, and the inequality in the curvature of the lens surfaces; and his reference to the optic nerve is most scanty. These defects were in a large measure rectified by Galen (Figure 3).
Just how much the description given by Galen is the result of his own observations or that of predecessors is not known. But Galen's account is of significance not only because it marked an advance, but even more because no advance was on it till after Vesalius. If pre-Hippocratic anatomy was speculative, and Alexandrian anatomy truly descriptive, anatomy after Galen became a historical exercise on which commentators were busy for well over a thousand years.
A fairly clear recognition of the ciliary body seems to have been arrived at. The corneo-scleral junction -- one name for which, incidentally, was iris, a designation that persisted till well into the 18th century -- was also the seat of fusion of the choroid and retina, where in addition a layer lining the anterior surface of the lens also terminated. The posterior chamber was clearly recognized, as was also the fact that it contains the same fluid as the anterior chamber. The greater curvature of the posterior surface of the lens was likewise recognize; the lens itself was held to fuse with the choroid by which it was kept in position.
It should be noted that whilst the recognition of the greater curvature of the cornea over the sclera was obviously the result of observation, the recognition of the existence of the posterior chamber was the result of speculation. Galen's writings are not clear on the subject, and as Magnus points out, he could not possibly find a space between the lens and iris in an eye cut open without the modern methods of preliminary fixation; but his theory of vision which postulated dilatation of the pupil by , pneuma, called for a posterior chamber through which the pneuma could diffuse on to the lens.
Speculation also entered into the description of the optic nerve. Whilst Galen recognized its solid structure he had to maintain a central hollow canal, in the sense of Alcmaeon. At the chiasma fusion of the hollow canals of both nerves took place. That Galen drew on animal dissection is clearly seen from his description of extraocular muscles, of which there are seven -- the six of present-day human anatomy with an additional massive ensheathing muscle which arises from where the optic nerve enters the orbit -- obviously the retractor bulbi of comparative anatomy. Furthermore, in describing the lacrimal apparatus he speaks of two glands, one in the upper and one in the lower lid. Galen recognized another source of tears - glands in the conjunctiva of the lids. The conjunctiva itself he held to be derived from the pericranium.
Arabian anatomy was the anatomy of Galen modified not by the evidence of dissection but by conclusions drawn from speculation. Depression of cataract extensively practised; and as the prevailing view was that a corrupted humour in front of the lens was displaced in the process, it was necessary to conceive the lens as being situated further back than in Galen's scheme. This view as to the seat of the lens persisted till the beginning of the 17th century.
With the coming of Vesalius, anatomy turned once more from speculation and commentaries to dispassionate observation. But to ocular anatomy Vesalius contributed nothing (Figure 4). His teaching is distinctly inferior to that of Galen and even of Arabian ophthalmology. The recognition of the greater curvature of the cornea over the sclera, and of the posterior surface of the lens over the anterior, is lost. A central position of the lens is once more in evidence. Even more astounding is Vesalius' acceptance of Galen's retractor bulbi.
Modern anatomy of the eye did not emerge till the physicists had demolished the old conceptions of the nature of vision. It began when it was realized that the lens is not the seat of vision, but part of a refractive system. With Fabricius as a precursor in showing the true position of the lens (A.D. 1600), a host of observers rapidly built up the basis of the anatomical scheme as we know it today. Fallopius rediscovered the greater curvature of the cornea and stressed the difference in structure as between the cornea and sclera. A clearer view of the capsule of the lens and a description of the hyaloid membrane likewise came from him. He differed from Vesalius in regarding the ciliary body as a membrane, and held it to be a ligament binding the lens to the choroid. Incidentally, he also disproved the existence of the retractor bulbi in man. Ruysch, who studies the vascular structure of the choroid, is also responsible for showing the existence of circular muscle fibres in the iris. Briggs, who is remembered for his demonstration of the existence of the optic papilla (regarded by him as a projection, as its name implies), showed that the retina extended up to the ciliary "ligament." What the 16th century began falteringly was well done in the 17th. A comparison of two reproduction showing the state of anatomical knowledge towards the beginning and the end of the 17th century is of interest (Figure 5 and 6).
In studying the constitution of the lens, Morgagni found fluid between the capsule and the lens fibres. This fluid was held to nourish the lens - a mistaken notion but one which, at any rate, was an advance on the belief that the lens and cornea contained vasa serosa, which possessed the property of impermeability to red blood cells. To the anatomy of this period belongs the description of the spaces of Fontana, as also the discovery by Demours of the canal of Petit, so named by him, the Zonula of Zinn commemorates the name of an observer who also contributed studies on the blood-vessels around the entry of the optic nerve (circulus arteriosus of Zinn) and on the action of the ciliary body.
The presence of muscle fibres in the ciliary body was a matter of much discussion; some held with Morgagni that they existed and affected accommodation, others with Zinn, that they were non-existent. Similarly contraction and dilatation of the pupil were explained on the conflicting view that different degrees of congestion of the vessels of the iris produced changes in the size of the pupil.
It is noteworthy that even at this late stage some gross points were still unsettled. Though Petit in 1728 had clearly demonstrated the posterior chamber, its existence was being questioned down to 1855 and it was not until the work of Helmholtz, Henle and Arlt that this question was finally settled.
Whilst by the end of the 18th century the uveal tract had been fairly well described, the retina was barely recognized, for the day of cellular anatomy had not yet come. At the turn of the century Buzzi, Sömmering and Reil described the macula lutea. The additions to our knowledge of the anatomy of the eye during the 19th century are largely the history of the consequences of the introduction of the compound microscope and the rise of the cellular theory.
The advances recorded during the earlier part of the 19th century, before the introduction of the microscope, are typified by the description of Jacob's membrane. Jacob described a serious layer in the eye, lying between the retina and the choroid; this ultimately came to be regarded as a constituent part of the retina, which was held to consist of three layers, a limiting layer, a nervous layer -- the retina proper -- and Jacob's membrane. Jacob's membrane is indeed nothing else than the rods and cones of modern histology. To this period belongs also the discovery of the canal of Schlemm.
The compound microscope opened a new realm of observation, and the realization of the significance of the new facts which were rapidly gathered, culminated in Schwann's theory that all living matter consists of cells. As early as 1722 Leeuwenhoek had noted the rods and cones of the retina, but their existence had to be rediscovered in 1834 by Treviranus. And just as the retina was gradually being recognized, so other tissues were studies by the new microscopic methods. In a few brilliant years of intense work.
sexta-feira, 12 de outubro de 2007
Quiasma
Ceratite
terça-feira, 9 de outubro de 2007
Luz
Um raio de luz é a representação da trajectória da luz em determinado espaço, e sua representação indica de onde a luz sai (fonte) e para onde ela se dirige. O conceito de raio de luz foi introduzido por Alhazen. Propagando-se em meio homogeneo, a luz sempre percorre trajetórias retilíneas; somente em meios não-homogêneos é que a luz pode descrever "curva".
Em sentido figurado significa esclarecer ou fazer algo compreensível.
No século I a.C. Lucrécio, dando continuidade às ideias dos primeiros atomistas, escreveu que a luz solar e o seu calor eram compostos de pequenas partículas.
O físico inglês Isaac Newton, em 1672, defendeu uma teoria onde se considerava a luz como um feixe de partículas que eram emitidas por uma fonte, e que estas atingiam o olho, e assim estimulavam a visão. A este modelo, se deu o nome de modelo corpuscular da luz.
Teoria ondulatória da luz
No século XVII, Huygens, entre outros, propôs a ideia de que a luz fosse um fenómeno ondulatório. Francesco Maria Grimaldi observou os efeitos de difracção, actualmente conhecidos como associados à natureza ondulatória da luz, em 1665, mas o significado das suas observações não foi entendido naquela época.
As experiências de Thomas Young e Augustin Fresnel sobre interferência e difracção no primeiro quarto do século XIX, demonstraram a existência de fenómenos ópticos, para os quais a
O físico francês Jean Bernard Léon Foucault, no século XIX, descobriu que a luz se deslocava mais rápido no ar do que na água. O efeito contrariava a teoria corpuscular de Newton, esta afirmava que a luz deveria ter uma velocidade maior na água do que no ar.
James Clerk Maxwell, ainda no século XIX, provou que a velocidade de propagação de uma onda eletromagnética no espaço, equivalia à velocidade de propagação da luz de aproximadamente 300.000 km/s.
Foi de Maxwell a afirmação:
A luz é uma "modalidade de energia radiante" que se "propaga" através de ondas eletromagnéticas.
Teoria da dualidade onda partícula
No final do século XIX, a teoria que afirmava que a natureza da luz era puramente uma onda eletromagnética, (ou seja, a luz tinha um comportamento apenas ondulatório), começou a ser questionada.
Ao se tentar teorizar a emissão fotoelétrica, ou a emissão de elétrons quando um condutor tem sobre si a incidência de luz, a teoria ondulatória simplesmente não conseguia explicar o fenômeno, pois entrava em franca contradição.
Foi Albert Einstein, usando a idéia de Max Planck, que conseguiu demonstrar que um feixe de luz são pequenos pacotes de energia e estes são os fótons, logo, assim foi explicado o fenômeno da emissão fotoelétrica.
A confirmação da descoberta de Einstein se deu no ano de 1911, quando Arthur Compton demonstrou que "quando um fóton colide com um elétron, ambos comportam-se como corpos materiais."
segunda-feira, 8 de outubro de 2007
Tracoma
É causada pela bactéria Chlamydia trachomatis e é transmitida por contacto directo com os olhos, nariz e secreções bucais de indivívuos afectados, ou então através de objectos que tiveram em contacto com essas secreções.
A bactéria possui um período de incubação de 5 a 12 dias, depois dos quais e indivíduo apresenta sintomas de conjuntivite ou irritação ocular.
Outros sintomas incluem:Corrimento ocular, Pálpebras inchadas, Triquíase, Inchaço dos nódulos linfáticos junto aos ouvidos.
A doença é uma das mais antigas patologia oculares conhecidas, tendo sido identificada tão cedo quanto 27 d.C. A maioria das pessoas infectadas vive primariamente em países subdesenvolvidos e pobres de África, do Médio Oriente e da Ásia.
A doença pode ser efectivamente tratada com antibióticos e prevenida através de higiene adequada e meios educativos. É também importante evitar o contacto de indivíduos infectados com indivíduos sãos.
Retinoblastoma
É causado por uma mutação na proteína Rb. Ocorre na maior parte dos casos em crianças pequenas e representa 3% dos tumores padecidos por menores de quinze anos. A incidência anual estimada é de aproximadamente 4 afectadas a cada um milhão de crianças.
O tumor pode ter início em um ou em ambos os olhos. Geralmente, o retinoblastoma limita-se aos olhos, embora possa estender-se a outras zonas do crânio.
Esta doença pode ser hereditária ou não. A forma herdada pode apresentar-se em um ou ambos os olhos e geralmente afecta as crianças mais pequenas. O retinoblastoma presente em só um olho não é hereditária e afecta sobretudo crianças com mais idade. Quando a enfermidade se apresenta em ambos os olhos é sempre hereditária. Devido ao factor hereditário, os pacientes e seus irmãos devem submeter-se a exames periódicos, juntamente com terapia genética para determinar o risco que têm em desenvolver o tumor.
A escolha do tratamento que irá fazer o paciente dependerá da extensão do mal dentro do olho e para além deste. Os tumores pequenos podem ser removidos com cirugia laser, com termoterapia ou crioterapia.
Nervo troclear
O Nervo troclear ou patético constitui, com o homólogo contralateral, o quarto (IV) par de nervos cranianos e um dos três pares de nervos oculomotores.
Junto com os nervos oculomotor e abducente inerva músculos que movimentam o olho, sendo que o III par é também responsável pela inervação de músculos chamados íntrínsecos do olho, como o músculo esfincter da íris (que fecha a pupila) e o músculo ciliar (que controla a forma da lente).
Sindroma de Horner
Sintomas
Os principais sintomas são ptose (queda da pálpebra superior), miose (constrição da pupila) e ocasionalmente enoftalmia (afundamento do olho) e anidrose (transpiração diminuída) em um dos lados da face.
Em crianças a síndrome de Horner às vezes leva a uma diferença na coloração entre os dois olhos (heterocromia).Isto ocorre porque uma falta de estimulação simpática na infância interfere na pigmentação da melanina dos melanócitos no estroma superficial da íris.
Causas
A síndrome de Horner geralmente é adquirida mas pode também ser congênita (presente ao nascimento) ou iatrogênica (causada por tratamento médico). Embora a maioria das causas sejam relativamente benignas, a síndrome de Horner pode refletir uma doença séria no pescoço ou peito (como o tumor de Pancoast ou dilatação venosa tireocervical) e conseqüentemente requer investigação. Principais causas:
Devido a uma lesão em um lado da cadeia simpática cervical, que afeta o mesmo lado da lesão
Síndrome de PICA
Cefaleia em salvas
Trauma - na base do pescoço
AVC
Infecção do ouvido médio
Tumores - Exemplo: Tumor de Pancoast
Aneurisma aórtico, torácico
Neurofibromatose tipo 1
Bócio
Aneurisma aórtico dissecante
Carcinoma de tireóide
Carcinoma broncogênico
Esclerose múltipla
Dissecção de artéria carótida
Paralisia de Klumpke
Trombose do seio cavernoso
Simpatectomia
Siringomielia
Hemeralopia
A vitamina A (retinol) é uma vitamina lipossolúvel essencial ao crescimento e desenvolvimento do ser humano. Atua também na manutenção da visão, no funcionamento adequado do sistema imunológico (defesa do organismo contra doenças, em especial as infecciosas), mantém saudáveis as mucosas (cobertura interna do corpo que recobre alguns órgãos como nariz, garganta, boca, olhos, estômago) que também atuam como barreiras de proteção contra infecções, a pele e os cabelos.
Estrutura da Vitamina A
Exoftalmia
Se não for tratada, a exoftalmia pode impedir com que as pálpebras fechem corretamente durante o sono, causando dano à córnea. O processo também pode comprimir o nervo óptico ou a artéria oftálmica, acarretando cegueira.
A exoftalmia é comumente encontrada em cães. É uma condição normal em cães de nariz curto devido à órbita rasa. Entretanto, ela pode originar uma ceratite secundária à exposição da córnea. A exoftalmia é mais encontrada em Pug, Boston Terrier, Pekingese, e Shih Tzu.
Depósitos de Lentes de Contacto
Esses factores podem ser classificados em duas categorias:
depósitos produzidos pela lágrima,
depósitos de origem exterior à lágrima.
Entre os causadores de depósitos produzidos pela lágrima temos as proteínas, os lípidos, os mucopolissacarídeos e os sais minerais.
Para os depósitos de origem exterior temos as bactérias, os fungos, sais minerais e metais.
Uma outra classificação possível divide os depósitos na sua natureza física e química:
depósitos orgânicos,
depósitos inorgânicos
e depósitos mistos.
Os depósitos orgânicos são os produzidos por: proteínas, lípidos, mucopolissacarídeos, bactérias,vírus e fungos.
Os depósitos inorgânicos são produzidos por: fosfatos de cálcio, carbonato de cálcio e metais vários (vulgarmente ferro).
Como depósitos mistos apenas encontramos:
cálculos.
Lentes de contacto para bebés revolucionam a indústria óptica
Implante ocular biónico pode chegar ao mercado dentro de dois anos
Fibra Óptica
A fibra óptica foi inventada pelo físico indiano Narinder Singh Kapany. Há vários métodos de fabricação de fibra óptica, sendo os métodos MCVD, VAD e OVD os mais conhecidos.
As fibras ópticas são utilizadas como meio de transmissão de ondas electromagnéticas (como a luz) uma vez que são transparentes e podem ser agrupadas em cabos. Estas fibras são feitas de plástico ou de vidro. O vidro é mais utilizado porque absorve menos as ondas electromagnéticas. As ondas electromagnéticas mais utilizadas são as correspondentes à gama da luz infravermelha. O meio de transmissão por fibra óptica é chamado de "guiado", porque as ondas eletromagnéticas são "guiadas" na fibra, embora o meio transmita ondas omnidirecionais, contrariamente à transmissão "sem-fio", cujo meio é chamado de "não-guiado". Mesmo confinada a um meio físico, a luz transmitida pela fibra óptica proporciona o alcance de taxas de transmissão (velocidades) elevadíssimas, da ordem de dez elevado à nona potência a dez elevado à décima potência, de bits por segundo, com baixa taxa de atenuação por quilômetro. Mas a velocidade de transmissão total possível ainda não foi alcançada pelas tecnologias existentes. Como a luz se propaga no interior de um meio físico, sofrendo ainda o fenômeno de reflexão, ela não consegue alcançar a velocidade de propagação no vácuo, que é de 300.000 km/segundo, sendo esta velocidade diminuída consideravelmente (Na realidade a luz não abranda, mas percorre uma distancia maior visto que não vai em linha recta, mas sim aos zig zags).
Cabos fibra óptica atravessam oceanos. Usar cabos para conectar dois continentes separados pelo oceano é um projecto monumental. É preciso instalar um cabo com milhares de quilómetros de extensão sob o mar, atravessando fossas e montanhas submarinas. Nos anos 80, tornou-se disponível, o primeiro cabo fibra óptica intercontinental desse tipo, instalado em 1988, e tinha capacidade para 40.000 conversas telefónicas simultâneas usando tecnologia digital. Desde então, a capacidade dos cabos aumentou. Alguns cabos que atravessam o oceano Atlântico têm capacidade para 200 milhões de circuitos telefónicos!
Para transmitir dados pela fibra óptica, é necessário um equipamento especial chamado "infoduto", que contém um componente fotoemissor, que pode ser um diodo emissor de luz (LED) ou um diodo laser. O fotoemissor converte sinais elétricos em pulsos de luz que representam os valores digitais binários 0 e 1.
Uma característica importante que torna a fibra óptica indispensável em muitas aplicações é o facto de não ser susceptível à interferência electromagnética, pela razão de que não transmite pulsos elétricos, como ocorre com outros tipos de meio de transmissão que empregam o fios metálicos, como o cobre.
Monomodo (Transmite um feixe em linha recta, são mais finas, mais rápidas, transmitem em maiores distâncias porém são mais caras.)
Multimodo (apresentando diversas camadas de substâncias e índices de refração diferentes que ajudam na propagação da luz e combatem a perda de sinal (atenuação)).